Nonlinearity-aware sub-model combination in trajectory based methods for nonlinear Mor
نویسندگان
چکیده
Trajectory based methods approximate nonlinear dynamical systems by superposition of dimensionally reduced linear systems. The linear systems are obtained by linearisations at multiple points along a state-trajectory. They are combined in a weighted sum and the combinations are switched appropriately to approximate the dynamic behaviour of the nonlinear system. Weights assigned at a specimen point on the trajectory generally depend on the euclidean distance to the linearisation points. In this work, limitations of the conventional weight-assignment scheme are pointed out. It is shown that the procedure is similar across all nonlinearities, and hence ignores the nonlinear vector field curvature for superposition. Additionally, it results in an inadequate assessment of the linear systems when they are equidistant from the specimen point. An improved method for weight-assignment, which uses state-velocities in addition to state-positions is proposed. The method naturally takes into account the system nonlinearity and is hence called Nonlinearity-aware Trajectory Piece-wise Linear (Ntpwl) method. Further, a computationally efficient procedure for estimating the state-velocity is introduced. The new strategy is illustrated and assessed with the help of case studies and it is shown that the Ntpwl model substantially improves the approximation of the nonlinear systems considered. Increased robustness to training and negligible stretching of the computational resources is also obtained.
منابع مشابه
A trajectory piecewise-linear approach to model order reduction of nonlinear dynamical systems
In this study we discuss the problem of Model Order Reduction (MOR) for a class of nonlinear dynamical systems. In particular, we consider reduction schemes based on projection of the original state-space to a lower-dimensional space e.g. by using Krylov methods. In the nonlinear case, however, applying a projection-based MOR scheme does not immediately yield computationally efficient macromode...
متن کاملDesign of Nonlinear Robust Controller and Observer for Control of a Flexible Spacecraft
Two robust nonlinear controllers along with a nonlinear observer have been developed in this study to control a 1D nonlinear flexible spacecraft. The first controller is based on dynamic inversion, while the second one is composed of dynamic inversion and µ-synthesis controllers. The extension of dynamic inversion approach to flexible spacecraft is impeded by the non-minimum phase characteristi...
متن کاملDispersion and Nonlinearity in Ultra-Optical Ga2O3 and TiO2-Bi2O3-PbO Glass Systems
Dispersion, as the characteristic variation of refractive index with wavelength, is more pronounced, where the wavelength is approaching to the absorption band. In ultra-optical glasses, the nonlinear refractive index, concerning to the light intensity dependent phenomenon, becomes considerable. Here, two ultra-optical property glass systems; TiO2-Bi2O3-PbO (TBP...
متن کاملDynamics of nonlinear rectangular plates subjected to an orbiting mass based on shear deformation plate theory
In this paper, transverse and longitudinal vibration of nonlinear plate under exciting of orbiting mass is considered based on first-order shear deformation theory. The nonlinear governing equation of motion are discretized by the finite element method in combination with Newmark’s time integration scheme under von Karman strain-displacement assumptions. For validation of method and formulation...
متن کاملEmploying Foundation Nonlinearity to Mitigate Seismic Demand in Superstructure
Because of difficulty in inspection and retrofit of foundation in comparison with other elements, the common design philosophy is to avoid any nonlinear deformation in the foundation. This paper shows that by employing controlled foundation nonlinearity, in predetermined sections with arrangements for inspection and retrofit, it is possible to reduce seismic demand on superstructure. Localizing...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Mathematics and Computers in Simulation
دوره 94 شماره
صفحات -
تاریخ انتشار 2013